cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239288 Maximal sum of x0 + x0*x1 + ... + x0*x1*...*xk over all compositions x0 + ... + xk = n.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 15, 22, 33, 48, 69, 102, 147, 210, 309, 444, 633, 930, 1335, 1902, 2793, 4008, 5709, 8382, 12027, 17130, 25149, 36084, 51393, 75450, 108255, 154182, 226353, 324768, 462549, 679062, 974307, 1387650, 2037189, 2922924, 4162953, 6111570
Offset: 0

Views

Author

Thomas Dybdahl Ahle, Jun 13 2014

Keywords

Comments

This sequence comes up in the analysis of exact algorithms for maximum independent sets.

Examples

			For n = 4 there are three solutions, all summing to 6: 3+3*1, 2+2*1+2*1*1, 2+2*2.
For n = 7 there is only one solution: 2 + 2*2 + 2*2*2 + 2*2*2*1.
		

Programs

  • Maple
    mulprod := proc(L)
        local i,k ;
        add(mul(op(k,L),k=1..i),i=1..nops(L)) ;
    end proc:
    A239288 := proc(n)
        a := 0 ;
        for pa in combinat[partition](n) do
            for pe in combinat[permute](pa) do
                f := mulprod(pe) ;
                a := max(a,f) ;
            end do:
        end do:
        return a;
    end proc: # R. J. Mathar, Jul 03 2014

Formula

a(0) = 0, a(n) = max{k + k*a(n - k) | 1 <= k <= n}.
For n >= 8 the solution becomes cyclic: a(3n + k) = 3 + 3a(3n - 3 + k).
G.f.: -x*(x^2+x+1)*(x^5-2*x^4+2*x^3-x^2-1) / ((x-1)*(3*x^3-1)). - Joerg Arndt