cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A245667 Number T(n,k) of sequences in {1,...,n}^n with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 10, 16, 1, 0, 35, 175, 45, 1, 0, 126, 1771, 1131, 96, 1, 0, 462, 17906, 23611, 4501, 175, 1, 0, 1716, 184920, 461154, 161876, 13588, 288, 1, 0, 6435, 1958979, 8837823, 5179791, 759501, 34245, 441, 1, 0, 24310, 21253375, 169844455, 157279903, 36156355, 2785525, 75925, 640, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 28 2014

Keywords

Comments

Sum_{k=0..1} T(n,k) = A088218(n).
Sum_{k=0..2} T(n,k) = A239295(n).
Sum_{k=0..3} T(n,k) = A239299(n).
Sum_{k=1..n} k * T(n,k) = A275576(n).

Examples

			T(3,1) = 10: [1,1,1], [2,1,1], [2,2,1], [2,2,2], [3,1,1], [3,2,1], [3,2,2], [3,3,1], [3,3,2], [3,3,3].
T(3,3) = 1: [1,2,3].
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    3,      1;
  0,   10,     16,      1;
  0,   35,    175,     45,      1;
  0,  126,   1771,   1131,     96,     1;
  0,  462,  17906,  23611,   4501,   175,   1;
  0, 1716, 184920, 461154, 161876, 13588, 288,  1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A088218 or A001700(n-1) for n>0, A268869, A268870, A268871, A268872, A268873, A268874, A268875, A268876, A268877.
Main diagonal gives A000012.
T(n,n-1) gives A152618(n) for n>0.
T(n,n-2) gives A268936(n).
T(2n,n) gives A268949(n).
Row sums give A000312.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1, [seq(min(l[j],
          `if`(j=1 or l[j-1] `if`(k=0, `if`(n=0, 1, 0), b(n, [n$k])):
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..9);
  • Mathematica
    b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[b[n-1, Table[Min[l[[j]], If[j == 1 || l[[j-1]]Jean-François Alcover, Feb 04 2015, after Alois P. Heinz *)

A239368 Number of words of length n over the alphabet {0,...,n-1} that avoid the pattern 1111.

Original entry on oeis.org

1, 1, 4, 27, 252, 3020, 44220, 765030, 15269520, 345376080, 8730489600, 243911883600, 7463164262400, 248207881521600, 8915064168410400, 343923449355486000, 14182674669779616000, 622591172035376544000, 28986699477880400256000, 1426677017904959524704000
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n^n,
         ((105*n^3-252*n^2+175*n-36) *a(n-1) -2*(n-1)^2 *a(n-2)
         +2*(5*n-2)*(n-1)^2*(n-2)^2*a(n-3)) / (4*(2*n-1)*(5*n-7)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 20 2014

Formula

Recursion: see Maple program.

Extensions

a(8)-a(11) from Alois P. Heinz, Mar 17 2014
a(12)-a(19) from Alois P. Heinz, Jul 20 2014

A268869 Number of sequences in {1,...,n}^n with longest increasing subsequence of length two.

Original entry on oeis.org

1, 16, 175, 1771, 17906, 184920, 1958979, 21253375, 235401166, 2653427140, 30356604642, 351714783980, 4119532070980, 48708027030608, 580682498991627, 6973355148949335, 84286653134676230, 1024694093358751200, 12522664845237058050, 153762682169941498170
Offset: 2

Views

Author

Alois P. Heinz, Feb 15 2016

Keywords

Examples

			a(2) = 1: 12.
a(3) = 16: 112, 113, 121, 122, 131, 132, 133, 212, 213, 223, 231, 232, 233, 312, 313, 323.
a(4) = 175: 1112, 1113, 1114, 1121, ..., 4414, 4423, 4424, 4434.
		

Crossrefs

Column k=2 of A245667.

Formula

a(n) = A239295(n) - A088218(n) = A239295(n) - A001700(n-1).

A268870 Number of sequences in {1,...,n}^n with longest increasing subsequence of length three.

Original entry on oeis.org

1, 45, 1131, 23611, 461154, 8837823, 169844455, 3307239364, 65559881608, 1325285983528, 27321430823064, 573932303529170, 12269791047231748, 266575464412874571, 5877527995117635663, 131334452330324176828, 2970563969803965041900, 67935408457473145627500
Offset: 3

Views

Author

Alois P. Heinz, Feb 15 2016

Keywords

Examples

			a(3) = 1: 123.
a(4) = 45: 1123, 1124, 1134, 1213, 1214, 1223, 1224, 1231, 1232, 1233, 1241, 1242, 1243, 1244, 1314, 1323, 1324, 1334, 1341, 1342, 1343, 1344, 1423, 1424, 1434, 2123, 2124, 2134, 2234, 2314, 2324, 2334, 2341, 2342, 2343, 2344, 2434, 3123, 3124, 3134, 3234, 4123, 4124, 4134, 4234.
		

Crossrefs

Column k=3 of A245667.

Formula

a(n) = A239299(n) - A239295(n).

A239296 Words of length n over the alphabet {0,...,n-1} that are 112-avoiding.

Original entry on oeis.org

1, 1, 4, 24, 186, 1745, 19090, 237594, 3305610, 50736447, 850285888, 15430858102, 301188960996, 6286897888336, 139661748755464, 3288136274970026, 81747690289414282, 2139280904017185007, 58762203796595526676, 1689933802493155288876, 50768897450201657287066
Offset: 0

Views

Author

Chad Brewbaker, Mar 14 2014

Keywords

Examples

			For a(3) all words of length 3 over {0,1,2} except: 001, 002, 112.
		

Crossrefs

Extensions

a(8)-a(11) from Giovanni Resta, Mar 14 2014
a(12)-a(18) from Alois P. Heinz, Mar 15 2014
a(19)-a(20) from Hiroaki Yamanouchi, Oct 02 2014

A239371 Words of length n over the alphabet {0,...,n-1} that avoid the pattern 1123.

Original entry on oeis.org

1, 1, 4, 27, 252, 2935, 40351, 633864, 11139840, 215800335, 4557031407, 103989209082, 2546369980589, 66521801043100, 1845008781481516, 54102505102771686, 1671315770146956704, 54219694639758864087, 1842085959295755494339, 65380444351870047159358
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Cf. A239295.

Extensions

a(8)-a(15) from Alois P. Heinz, Mar 17 2014
a(16)-a(19) from Hiroaki Yamanouchi, Oct 02 2014

A239369 Words of length n over the alphabet {0,...,n-1} that avoid the pattern 1112.

Original entry on oeis.org

1, 1, 4, 27, 250, 2935, 41676, 693798, 13242762, 285008223, 6826605520, 180084705031, 5187350461800, 161993077533092, 5451141889485852, 196629624309733488, 7568494925621640330, 309628452894632990415, 13415755128012445232100
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Cf. A239295.

Extensions

a(8)-a(12) from Alois P. Heinz, Mar 19 2014
a(13)-a(18) from Hiroaki Yamanouchi, Oct 01 2014

A239370 Words of length n over the alphabet {0,...,n-1} that avoid the pattern 1122.

Original entry on oeis.org

1, 1, 4, 27, 250, 2915, 40806, 664944
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Cf. A239295.

A239372 Words of length n over the alphabet {0,...,n-1} that avoid the pattern 1212.

Original entry on oeis.org

1, 1, 4, 27, 250, 2915, 40746, 661304
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Cf. A239295.

A239373 Words of length n over the alphabet {0,...,n-1} that avoid the pattern 1213.

Original entry on oeis.org

1, 1, 4, 27, 252, 2935, 40330, 632408
Offset: 0

Views

Author

Chad Brewbaker, Mar 17 2014

Keywords

Crossrefs

Cf. A239295.
Showing 1-10 of 16 results. Next