A239303 Triangle of compressed square roots of Gray code * bit-reversal permutation.
1, 3, 1, 6, 1, 5, 6, 9, 1, 10, 12, 18, 1, 17, 10, 12, 18, 33, 1, 34, 20, 24, 36, 66, 1, 65, 34, 20, 24, 36, 66, 129, 1, 130, 68, 40, 48, 72, 132, 258, 1, 257, 130, 68, 40, 48, 72, 132, 258, 513, 1, 514, 260, 136, 80
Offset: 1
Examples
Triangular array begins: 1 3 1 6 1 5 6 9 1 10 12 18 1 17 10 12 18 33 1 34 20 Square array begins: 1 3 6 6 12 12 1 1 9 18 18 36 5 1 1 33 66 66 10 17 1 1 129 258 10 34 65 1 1 513 20 34 130 257 1 1 The Walsh permutation wp(8,12,6,3) = (0,8,12,4, 6,14,10,2, 3,11,15,7, 5,13,9,1) permutes the natural ordered into the sequency ordered Walsh matrix of size 2^4. Its square root is wp(6,9,1,10) = (0,6,9,15, 1,7,8,14, 10,12,3,5, 11,13,2,4). So row 4 of the triangular array is (6,9,1,10).
Links
- Tilman Piesk, First 140 rows of the triangle, flattened
- Tilman Piesk, Sequency ordered Walsh matrix (Wikiversity)
- Tilman Piesk, Calculation in MATLAB
Comments