A239326 Numbers k such that k^2 +/- (k-1) and (k-1)*k^2 +/- 1 are all primes.
2, 3, 6, 13, 21, 100, 120, 195, 393, 541, 1749, 1849, 3640, 3829, 4003, 5488, 5754, 8973, 8989, 9043, 10824, 10828, 13488, 17016, 18493, 19306, 21505, 24270, 27139, 30163, 31530, 34134, 35034, 39514, 40761, 46215, 46285, 46398, 49071, 49869, 53319, 55320
Offset: 1
Examples
6 is this sequence because (6-1)*6^2-1 = 179, (6-1)*6^2+1 = 181, 6^2-6+1 = 31 and 6^2+6-1 = 41 are all primes.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Programs
-
Magma
k := 1; for n in [1..100000] do if IsPrime(k*(n - 1)*n^2 + 1) and IsPrime(k*(n - 1)*n^2 - 1) and IsPrime(k*n^2 + n - 1) and IsPrime(k*n^2 - n + 1) then n; end if; end for;
Extensions
Edited by Alois P. Heinz, Mar 19 2014
Comments