A239333
Number of n X 1 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
2, 5, 12, 28, 66, 156, 368, 868, 2048, 4832, 11400, 26896, 63456, 149712, 353216, 833344, 1966112, 4638656, 10944000, 25820224, 60917760, 143723520, 339087488, 800010496, 1887468032, 4453111040, 10506243072, 24787422208, 58481066496
Offset: 1
Some solutions for n=5:
..0....2....2....2....0....0....0....0....2....2....2....2....2....0....2....2
..2....0....2....0....2....0....2....0....0....0....0....2....2....2....0....3
..2....2....2....3....2....2....3....0....2....2....3....0....0....0....3....2
..0....0....0....2....2....2....2....0....2....2....3....0....2....0....2....3
..2....2....2....0....2....0....0....0....3....0....2....2....3....2....3....2
A255115
Number of n-length words on {0,1,2} in which 0 appears only in runs of length 2.
Original entry on oeis.org
1, 2, 5, 12, 28, 66, 156, 368, 868, 2048, 4832, 11400, 26896, 63456, 149712, 353216, 833344, 1966112, 4638656, 10944000, 25820224, 60917760, 143723520, 339087488, 800010496, 1887468032, 4453111040, 10506243072, 24787422208, 58481066496, 137974619136
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 10.
- Index entries for linear recurrences with constant coefficients, signature (2,0,2).
-
RecurrenceTable[{a[0] == 1, a[1] == 2, a[2]== 5, a[n] == 2 a[n - 1] + 2 a[n - 3]}, a[n], {n, 0, 29}]
-
Vec(-(x^2+1)/(2*x^3+2*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
A255116
Number of n-length words on {0,1,2,3} in which 0 appears only in runs of length 2.
Original entry on oeis.org
1, 3, 10, 33, 108, 354, 1161, 3807, 12483, 40932, 134217, 440100, 1443096, 4731939, 15516117, 50877639, 166828734, 547034553, 1793736576, 5881695930, 19286191449, 63239784075, 207364440015, 679951894392, 2229575035401, 7310818426248, 23972310961920
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 10.
- Index entries for linear recurrences with constant coefficients, signature (3,0,3).
-
RecurrenceTable[{a[0] == 1, a[1] == 3, a[2]== 10, a[n] == 3 a[n - 1] + 3 a[n - 3]}, a[n], {n, 0, 25}]
LinearRecurrence[{3,0,3},{1,3,10},30] (* Harvey P. Dale, Feb 20 2023 *)
-
Vec(-(x^2+1)/(3*x^3+3*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
A255117
Number of n-length words on {0,1,2,3,4} in which 0 appears only in runs of length 2.
Original entry on oeis.org
1, 4, 17, 72, 304, 1284, 5424, 22912, 96784, 408832, 1726976, 7295040, 30815488, 130169856, 549859584, 2322700288, 9811480576, 41445360640, 175072243712, 739534897152, 3123921031168, 13195973099520, 55742031986688, 235463812071424, 994639140683776
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 10.
- Index entries for linear recurrences with constant coefficients, signature (4,0,4).
-
RecurrenceTable[{a[0] == 1, a[1] == 4, a[2]== 17, a[n] == 4 a[n - 1] + 4 a[n - 3]}, a[n], {n, 0, 25}]
-
Vec(-(x^2+1)/(4*x^3+4*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
A255118
Number of n-length words on {0,1,2,3,4,5} in which 0 appears only in runs of length 2.
Original entry on oeis.org
1, 5, 26, 135, 700, 3630, 18825, 97625, 506275, 2625500, 13615625, 70609500, 366175000, 1898953125, 9847813125, 51069940625, 264844468750, 1373461409375, 7122656750000, 36937506093750, 191554837515625, 993387471328125, 5151624887109375, 26715898623125000
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 10
- Index entries for linear recurrences with constant coefficients, signature (5,0,5).
-
RecurrenceTable[{a[0] == 1, a[1] == 5, a[2]== 26, a[n] == 5 a[n - 1] + 5 a[n - 3]}, a[n], {n, 0, 20}]
-
Vec(-(x^2+1)/(5*x^3+5*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
A239334
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
5, 31, 172, 926, 5078, 27861, 152260, 832207, 4550810, 24881731, 136029644, 743697760, 4065948624, 22229220072, 121530709245, 664428372582, 3632538661095, 19859679158791, 108576093277449, 593603153333233
Offset: 1
Some solutions for n=5
..2..0....2..0....2..0....2..1....2..2....0..2....0..2....2..1....2..2....2..1
..3..2....2..1....3..1....2..1....0..3....0..2....0..0....2..2....0..2....2..2
..3..3....0..2....3..2....0..2....3..1....2..0....0..2....2..0....2..1....2..1
..2..2....0..3....2..0....0..0....3..3....0..2....2..0....3..1....0..3....3..1
..3..1....0..0....0..3....0..0....2..1....0..0....3..1....2..0....0..0....3..1
A239335
Number of nX3 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
12, 172, 2187, 27341, 346028, 4360887, 54774178, 688266175, 8649330696, 108663198449, 1365050486095, 17148274201252, 215420739233431, 2706135761424448, 33994663679676011, 427043158643798758
Offset: 1
Some solutions for n=4
..0..0..0....2..0..0....0..0..2....2..0..0....0..2..2....0..0..2....0..0..2
..0..2..0....0..2..0....2..2..0....0..0..0....0..0..3....2..2..2....2..2..0
..0..2..2....2..2..0....0..0..0....0..0..2....0..0..3....0..3..1....3..2..3
..2..2..3....2..0..0....2..0..2....0..0..3....0..2..0....0..2..2....3..1..2
A239336
Number of nX4 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
28, 926, 27341, 790681, 22952323, 663249556, 19117551262, 550960518608, 15873533676775, 457181997376959, 13166310184133045, 379162593435951456, 10918763117793096685, 314422821700641922733, 9054241291311457562833
Offset: 1
Some solutions for n=3
..2..1..1..0....2..0..0..1....0..0..0..0....2..2..0..0....2..2..2..1
..0..3..2..0....0..2..1..3....2..1..1..2....0..2..1..1....0..3..3..2
..2..0..0..2....3..2..1..2....3..2..1..0....0..0..2..2....0..2..2..0
A239337
Number of nX5 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
66, 5078, 346028, 22952323, 1527488498, 101276030555, 6693244281896, 442014330398515, 29178369838713161, 1925440562309496640, 127035121924736497404, 8380770923086769177166, 552870412078787577689020
Offset: 1
Some solutions for n=2
..0..2..0..0..1....2..0..1..1..2....2..0..2..2..1....0..2..1..1..0
..2..0..0..2..3....2..0..1..1..3....0..2..2..0..2....2..0..2..3..1
A239338
Number of nX6 0..3 arrays with no element equal to one plus the sum of elements to its left or three plus the sum of elements above it, modulo 4.
Original entry on oeis.org
156, 27861, 4360887, 663249556, 101276030555, 15397080750829, 2331550702010844, 352742924096563362, 53342694175522093768, 8062792674253914737279, 1218391421349788433734529
Offset: 1
Some solutions for n=2
..2..0..0..1..2..1....0..2..0..2..0..0....2..0..0..1..2..0....2..1..2..1..2..0
..2..0..1..1..3..3....0..3..2..0..1..1....3..2..0..3..2..1....0..3..2..3..0..2
Showing 1-10 of 13 results.
Comments