cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239418 Numbers n such that n^10 - 10 is prime.

Original entry on oeis.org

21, 201, 267, 321, 369, 459, 537, 651, 669, 699, 723, 753, 1071, 1113, 1197, 1203, 1209, 1323, 1401, 1503, 1587, 1647, 1773, 1791, 1797, 1917, 1941, 2007, 2139, 2223, 2427, 2493, 2613, 2733, 2769, 2787, 2847, 3147, 3249, 3267, 3297, 3399, 3423, 3441, 3771
Offset: 1

Views

Author

Derek Orr, Mar 17 2014

Keywords

Comments

All of the numbers in this sequence are odd multiples of 3 and, thus, congruent to 3 (mod 6).
The tenth powers modulo 6 are 1, 4, 3, 4, 1, 0, ... (A070431). Subtracting 10 (still modulo 6), we get 3, 0, 5, 0, 3, 2, ... which means that only n = 3 mod 6 can produce a potential prime p = 5 mod 6.

Examples

			21^10 - 10 = 16679880978191 is prime. Thus, 21 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[#^10 - 10] &] (* Alonso del Arte, Mar 18 2014 *)
  • PARI
    is(n)=isprime(n^10-10) \\ Charles R Greathouse IV, Feb 20 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**10-10)}
    

A239506 Numbers n such that n^10+10 and n^10-10 are prime.

Original entry on oeis.org

4983, 105369, 113289, 150051, 191829, 208131, 277167, 305349, 363957, 400323, 494241, 541233, 577269, 656271, 668547, 995247, 1141503, 1218261, 1360623, 1494537, 1501863, 1528857, 1531959, 1534533, 1535919, 1621653, 1651551, 1864863, 1950597, 1969539, 2130513
Offset: 1

Views

Author

Derek Orr, Mar 20 2014

Keywords

Comments

All numbers are congruent to 33 mod 66.
Intersection of A239347 and A239418.

Examples

			4983^10+10 = 9438628041688305771192954743294050459 is prime and 4983^10-10 = 9438628041688305771192954743294050439 is prime. Thus, 4983 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[22*10^5],AllTrue[#^10+{10,-10},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 04 2018 *)
  • Python
    import sympy
    from sympy import isprime
    def TwoBoth(x):
      for k in range(10**8):
        if isprime(k**x+x) and isprime(k**x-x):
          print(k)
    TwoBoth(10)
Showing 1-2 of 2 results.