A239352 van Heijst's upper bound on the number of squares inscribed by a real algebraic curve in R^2 of degree n, if the number is finite.
0, 0, 1, 12, 48, 130, 285, 546, 952, 1548, 2385, 3520, 5016, 6942, 9373, 12390, 16080, 20536, 25857, 32148, 39520, 48090, 57981, 69322, 82248, 96900, 113425, 131976, 152712, 175798, 201405, 229710, 260896, 295152, 332673, 373660, 418320, 466866, 519517
Offset: 0
Examples
A point or a line has no inscribed squares, so a(0) = a(1) = 0. A circle has infinitely many inscribed squares, and an ellipse that is not a circle has exactly one, agreeing with a(2) = 1. G.f. = x^2 + 12*x^3 + 48*x^4 + 130*x^5 + 285*x^6 + 546*x^7 + 952*x^8 + ...
References
- Otto Toeplitz, Über einige Aufgaben der Analysis situs, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Solothurn, 4 (1911), 197.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Wouter van Heijst, The algebraic square peg problem, arXiv:1403.5979 [math.AG], 2014.
- Wouter van Heijst, The algebraic square peg problem, Master’s thesis, Aalto University, 2014.
- Benjamin Matschke, A Survey on the Square Peg Problem, AMS Notices, 61 (2014), 346-352.
- Benjamin Matschke, Extended Survey on the Square Peg Problem, Max Planck Institute for Mathematics, 2014.
- Sequences related to inscribed squares
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n^4 - 5*n^2 + 4*n)/4: n in [0..50]]; // G. C. Greubel, Aug 07 2018
-
Mathematica
Table[(n^4 - 5 n^2 + 4 n)/4, {n, 0, 38}]
-
PARI
for(n=0,50, print1((n^4 - 5*n^2 + 4*n)/4, ", ")) \\ G. C. Greubel, Aug 07 2018
Formula
a(n) = (n^4 - 5*n^2 + 4*n)/4 = n*(n - 1)*(n^2 + n - 4)/4 = A000217(n-1)*A034856(n-1), which shows the formula is an integer.
G.f.: x^2 * (1 + 7*x - 2*x^2) / (1 - x)^5. - Michael Somos, Mar 21 2014
a(n) = A172225(n)/2. - R. J. Mathar, Jan 09 2018
Comments