cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239362 Decimal expansion of Sum_{k>=1} 1/((3k-2)*(3k-1)*(3k)).

Original entry on oeis.org

1, 7, 8, 7, 9, 6, 7, 6, 8, 8, 9, 1, 5, 2, 7, 0, 3, 9, 7, 9, 9, 7, 0, 8, 2, 5, 5, 1, 7, 9, 9, 0, 7, 5, 0, 6, 9, 0, 9, 1, 4, 3, 9, 2, 2, 5, 6, 7, 4, 9, 7, 7, 8, 0, 9, 5, 8, 7, 9, 7, 6, 5, 0, 4, 3, 7, 6, 5, 7, 2, 2, 1, 9, 7, 6, 9, 3, 6, 2, 2, 9, 2, 0, 2, 6, 2, 7
Offset: 0

Views

Author

Bruno Berselli, Mar 17 2014

Keywords

Examples

			0.1787967688915270397997082551799075069091439225674977809587976504...
1/(1*2*3) + 1/(4*5*6) + 1/(7*8*9) + 1/(10*11*12) + 1/(13*14*15) + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 46 (series n. 250).

Crossrefs

Cf. A164833: Sum_{k>=1} 1/((4k-2)*(4k-1)*(4k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Pi(R)*Sqrt(3) - 3*Log(3))/12; // G. C. Greubel, Aug 11 2019
    
  • Maple
    evalf[100]((Pi*sqrt(3) - 3*log(3))/12 ); # G. C. Greubel, Aug 11 2019
  • Mathematica
    RealDigits[(Pi Sqrt[3]/3 - Log[3])/4, 10, 100][[1]]
  • PARI
    default(realprecision, 100); (Pi*sqrt(3) - 3*log(3))/12 \\ G. C. Greubel, Aug 11 2019
    
  • Sage
    numerical_approx((pi*sqrt(3) - 3*log(3))/12, digits=100) # G. C. Greubel, Aug 11 2019

Formula

Equals ( Pi*sqrt(3)/3 - log(3) )/4.