A239366 Triangular array read by rows: T(n,k) is the number of palindromic compositions of n having exactly k 1's, n>=0, 0<=k<=n.
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 0, 3, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 5, 0, 5, 0, 4, 0, 1, 0, 1, 3, 2, 3, 2, 1, 3, 1, 0, 0, 1, 8, 0, 10, 0, 7, 0, 5, 0, 1, 0, 1, 5, 3, 5, 5, 4, 3, 1, 4, 1, 0, 0, 1, 13, 0, 18, 0, 16, 0, 9, 0, 6, 0, 1, 0, 1, 8, 5, 10, 8, 7, 9, 5, 4, 1, 5, 1, 0, 0, 1
Offset: 0
Examples
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 0, 3, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 5, 0, 5, 0, 4, 0, 1, 0, 1, 3, 2, 3, 2, 1, 3, 1, 0, 0, 1 There are eight palindromic compositions of 6: T(6,0)=3 because we have: 6, 3+3, 2+2+2. T(6,2)=3 because we have: 1+4+1, 2+1+1+2, 1+2+2+1. T(6,4)=1 because we have: 1+1+2+1+1. T(6,6)=1 because we have: 1+1+1+1+1+1.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, expand( add(b(n-j)*`if`(j=1, x^2, 1), j=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n)) (add(b(i)*`if`(n-2*i=1, x, 1), i=0..n/2)): seq(T(n), n=0..30); # Alois P. Heinz, Mar 21 2014
-
Mathematica
nn=15;Table[Take[CoefficientList[Series[((1+x)*(1-x+x^2+x*y-x^2*y))/(1-x^2-x^4-x^2*y^2+x^4*y^2),{x,0,nn}],{x,y}][[n]],n],{n,1,nn}]//Grid
Formula
G.f.: G(x,y) = ((1 + x)*(1 - x + x^2 + x*y - x^2*y))/(1 - x^2 - x^4 - x^2*y^2 + x^4*y^2). Satisfies G(x,y) = 1/(1 - x) - x + y*x + (x^2/(1 - x^2) - x^2 +y^2*x^2)*G(x,y).
Comments