cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239366 Triangular array read by rows: T(n,k) is the number of palindromic compositions of n having exactly k 1's, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 0, 3, 0, 1, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 5, 0, 5, 0, 4, 0, 1, 0, 1, 3, 2, 3, 2, 1, 3, 1, 0, 0, 1, 8, 0, 10, 0, 7, 0, 5, 0, 1, 0, 1, 5, 3, 5, 5, 4, 3, 1, 4, 1, 0, 0, 1, 13, 0, 18, 0, 16, 0, 9, 0, 6, 0, 1, 0, 1, 8, 5, 10, 8, 7, 9, 5, 4, 1, 5, 1, 0, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 20 2014

Keywords

Comments

Row sums = 2^floor(n/2).
T(n,0) = A053602(n-1) for n>0, T(n,1) = A079977(n-5) for n>4, T(2n+1,3) = A006367(n-1) for n>0, both bisections of column k=2 contain A010049. - Alois P. Heinz, Mar 21 2014

Examples

			1,
0, 1,
1, 0, 1,
1, 0, 0, 1,
2, 0, 1, 0, 1,
1, 1, 1, 0, 0, 1,
3, 0, 3, 0, 1, 0, 1,
2, 1, 1, 2, 1, 0, 0, 1,
5, 0, 5, 0, 4, 0, 1, 0, 1,
3, 2, 3, 2, 1, 3, 1, 0, 0, 1
There are eight palindromic compositions of 6: T(6,0)=3 because we have: 6, 3+3, 2+2+2.  T(6,2)=3 because we have: 1+4+1, 2+1+1+2, 1+2+2+1.  T(6,4)=1 because we have: 1+1+2+1+1. T(6,6)=1 because we have: 1+1+1+1+1+1.
		

Programs

  • Maple
    b:= proc(n) option remember;  `if`(n=0, 1, expand(
          add(b(n-j)*`if`(j=1, x^2, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))
        (add(b(i)*`if`(n-2*i=1, x, 1), i=0..n/2)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Mar 21 2014
  • Mathematica
    nn=15;Table[Take[CoefficientList[Series[((1+x)*(1-x+x^2+x*y-x^2*y))/(1-x^2-x^4-x^2*y^2+x^4*y^2),{x,0,nn}],{x,y}][[n]],n],{n,1,nn}]//Grid

Formula

G.f.: G(x,y) = ((1 + x)*(1 - x + x^2 + x*y - x^2*y))/(1 - x^2 - x^4 - x^2*y^2 + x^4*y^2). Satisfies G(x,y) = 1/(1 - x) - x + y*x + (x^2/(1 - x^2) - x^2 +y^2*x^2)*G(x,y).