cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239425 Expansion of -16/(sqrt(12*x+2*sqrt(1-4*x)+2)-sqrt(1-4*x)-1)^2+1/x^2-1.

Original entry on oeis.org

1, 2, 7, 16, 53, 156, 522, 1702, 5833, 19990, 70079, 247160, 882587, 3172196, 11492847, 41874864, 153452521, 564975570, 2089346157, 7756501690, 28898156364, 108010059036, 404890987653, 1521877280868, 5734545323859, 21657665796526
Offset: 0

Views

Author

Vladimir Kruchinin, Mar 17 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-16/(Sqrt[12*x+2*Sqrt[1-4*x]+2]-Sqrt[1-4*x] -1)^2+1/x^2-1, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 18 2014 *)
    Flatten[{1,Table[Sum[Binomial[n+2*j-1,j+n-1]*(-1)^(j+n)*Binomial[2*n+2,j+n],{j,0,n+2}]/(n+1),{n,1,20}]}] (* Vaclav Kotesovec, Mar 18 2014 *)
  • Maxima
    a(n):=(sum(binomial(n+2*j-1, j)*(-1)^(j+n)*binomial(2*n+2, j+n), j, 0, n+2))/(n+1)-kron_delta(n,0);
    
  • PARI
    my(x='x+O('x^50)); Vec(-16/(sqrt(12*x+2*sqrt(1-4*x)+2)-sqrt(1-4*x) -1)^2 + 1/x^2 -1) \\ G. C. Greubel, Jun 01 2017

Formula

a(n) = (Sum_{j=0..(n+2)} C(n+2*j-1,j)*(-1)^(j+n)*C(2*n+2,j+n))/(n+1) - delta(n,0).
a(n) ~ (5+3*sqrt(5)) * 2^(2*n+1) / (5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 18 2014
Conjecture: 2*(2*n+1)*(n+2)*(n+1)*a(n) +(n+1)*(n^2-27*n+2)*a(n-1) +2*(-73*n^3+204*n^2-167*n+6)*a(n-2) +12*(n-3)*(2*n-3)*(4*n-7)*a(n-3) +216*(2*n-5)*(n-3)*(2*n-3)*a(n-4)=0. - R. J. Mathar, Apr 02 2014