cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239442 a(n) = phi(n^7).

Original entry on oeis.org

1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.

Crossrefs

Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.

Programs

Formula

a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020