A239448 Limiting value of the iterated process of factoring n and concatenating prime powers (in decimal) in the order of increasing primes.
1, 2, 3, 4, 5, 23, 7, 8, 9, 25, 11, 43, 13, 27, 1129, 16, 17, 29, 19, 36389, 37, 211, 23, 83, 25, 3251, 27, 47, 29, 547, 31, 32, 311, 31397, 1129, 49, 37, 373, 313, 3137, 41, 379, 43, 3137, 36389, 223, 47, 163, 49, 71443, 317, 31123, 53, 227, 773, 983, 1129, 229, 59, 3529, 61, 31237, 97, 64, 2719
Offset: 1
Examples
A080695(15)=35, A080695(35)=57, A080695(57)=319, A080695(319)=1129, and A080695(1129)=1129. So, a(15)=1129.
Programs
-
Mathematica
f[n_]:=Module[{l=FactorInteger[n]}, Do[l[[i]]=l[[i,1]]^l[[i,2]],{i,1,Length[l]}]; l=FromDigits[Flatten[IntegerDigits/@l]]]; fp[n_]:=FixedPoint[f,n];fp/@Range[65] (* Ivan N. Ianakiev, Aug 02 2015 *)
-
PARI
{ print1(1", ");n=2; while(1, N=n;f=factor(N);m=matsize(f)[1]; while(m!=1, N=f[1,1]^f[1,2]; for(i=2,m, e=10;k=f[i,1]^f[i,2]; while(k>e,e*=10);N*=e;N+=k); f=factor(N);m=matsize(f)[1]); print1(N", ");n++) }
Extensions
a(65) corrected by Ivan N. Ianakiev, Aug 02 2015
Comments