A239492 The fifth bicycle lock sequence: a(n) is the maximum value of min{x*y, (5-x)*(n-y)} over 0 <= x <= 5, 0 <= y <= n for integers x, y.
0, 0, 2, 3, 4, 6, 6, 8, 9, 10, 12, 12, 14, 15, 16, 18, 18, 20, 21, 22, 24, 24, 26, 27, 28, 30, 30, 32, 33, 34, 36, 36, 38, 39, 40, 42, 42, 44, 45, 46, 48, 48, 50, 51, 52, 54, 54, 56, 57, 58, 60, 60, 62, 63, 64, 66, 66, 68, 69, 70, 72, 72, 74, 75, 76, 78, 78, 80, 81, 82, 84, 84, 86, 87, 88, 90, 90
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Robin Houston, Symmetry of bicycle lock numbers.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
The fifth row of A238158.
Programs
-
Maple
A239492:=n->n-1+floor(n/5)+ceil((n-1)/5)-floor((n-1)/5); seq(A239492(n), n=0..50); # Wesley Ivan Hurt, Mar 29 2014
-
Mathematica
a[n_] := Max[Table[Min[x*y, (5-x)*(n-y)], {x, 0, 5}, {y, 0, n}]] Table[n - 1 + Floor[n/5] + Ceiling[(n - 1)/5] - Floor[(n - 1)/5], {n, 0, 50}] (* Wesley Ivan Hurt, Mar 29 2014 *) CoefficientList[Series[(2 x^5 + x^4 + x^3 + 2 x^2)/((1 - x) (1 - x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 30 2014 *)
Formula
a(n) = max( min{x*y, (5-x)*(n-y)} | 0 <= x <= 5, 0 <= y <= n ).
From Ralf Stephan, Mar 29 2014: (Start)
a(n) = n + floor(n/5) - [n == 1 mod 5].
a(n) = 6*floor(n/5) + [0,0,2,3,4][n%5].
G.f.: (2*x^5 + x^4 + x^3 + 2*x^2)/((1-x)*(1-x^5)). (End)
a(n) = n - 1 + floor(n/5) + ceiling((n-1)/5) - floor((n-1)/5). - Wesley Ivan Hurt, Mar 29 2014
Comments