A239503 Numbers n such that n^8+8 and n^8-8 are prime.
3, 1515, 1689, 3327, 4461, 4641, 4965, 5043, 5583, 5709, 6183, 7089, 9291, 9369, 9699, 10125, 11109, 14175, 15081, 18393, 20295, 26955, 27009, 27219, 29067, 30513, 30807, 35355, 35889, 36003, 37935, 40107, 43461, 48045, 49005, 51783, 53289, 55527, 58833, 61203
Offset: 1
Keywords
Examples
3^8+8 = 6569 is prime and 3^8-8 = 6553 is prime. Thus, 3 is a member of this sequence.
Programs
-
Mathematica
Select[Range[3,62000,6],AllTrue[#^8+{8,-8},PrimeQ]&](* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 07 2020 *)
-
Python
import sympy from sympy import isprime def TwoBoth(x): for k in range(10**6): if isprime(k**x+x) and isprime(k**x-x): print(k) TwoBoth(8)
Comments