A239570 Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.
0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1)
Crossrefs
Programs
-
Magma
[(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
-
Mathematica
CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,114,1137,6100,23265,71211,186739,436437},30] (* Harvey P. Dale, May 28 2025 *)
-
PARI
concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
Formula
a(n) = (n-2)*(n-3)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2+4040*n-11904)/384.
G.f.: x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1) / (x-1)^9. - Colin Barker, Mar 22 2014
Comments