cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239607 a(n) = (1-2*n^2)^2.

Original entry on oeis.org

1, 1, 49, 289, 961, 2401, 5041, 9409, 16129, 25921, 39601, 58081, 82369, 113569, 152881, 201601, 261121, 332929, 418609, 519841, 638401, 776161, 935089, 1117249, 1324801, 1560001, 1825201, 2122849, 2455489, 2825761, 3236401, 3690241, 4190209, 4739329
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(1-2*n^2)^2 , {n, 0, 43}]
  • PARI
    vector(100, n, round(sin(asin(n-1) - acos(n-1))^2)) \\ Colin Barker, May 24 2014
    
  • PARI
    a(n)=(1-2*n^2)^2 \\ Charles R Greathouse IV, Jun 04 2014

Formula

From Colin Barker, May 24 2014: (Start)
a(n) = sin(arcsin(n) - arccos(n))^2.
G.f.: -(x^4+44*x^3+54*x^2-4*x+1) / (x-1)^5. (End)
a(n) = A056220(n)^2. - Michel Marcus, May 27 2014
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*cosec(Pi/sqrt(2))^2/8 + (Pi/(4*sqrt(2))*cot(Pi/sqrt(2))) + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*cosec(Pi/sqrt(2))*cot(Pi/sqrt(2))/8 + (Pi/(4*sqrt(2)))*cosec(Pi/sqrt(2)) + 1/2. (End)
E.g.f.: exp(x)*(1 + 24*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Feb 22 2025