cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239608 Sin( arcsin(n)- 2*arccos(n) )^2.

Original entry on oeis.org

0, 1, 676, 9801, 59536, 235225, 715716, 1825201, 4096576, 8346321, 15760900, 27994681, 47279376, 76545001, 119552356, 181037025, 266864896, 384199201, 541679076, 749609641, 1020163600, 1367594361, 1808460676, 2361862801, 3049690176, 3896880625, 4931691076
Offset: 0

Views

Author

Keywords

Comments

The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, where sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014

Crossrefs

Programs

  • Magma
    [n^2*(3-4*n^2)^2 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
  • Mathematica
    G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -2], {n, 0, 43}]
    CoefficientList[Series[- x (x + 1) (x^4 + 668 x^3 + 4422 x^2 + 668 x + 1)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2014 *)
    Table[n^2*(3-4*n^2)^2,{n,0,30}] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    vector(100, n, round(sin(asin(n-1) - 2*acos(n-1))^2)) \\ Colin Barker, May 24 2014
    

Formula

a(n) = n^2*(3-4*n^2)^2. G.f.: -x*(x+1)*(x^4+668*x^3+4422*x^2+668*x+1) / (x-1)^7. - Colin Barker, May 24 2014
a(n) = A144129(n)^2. - Robert Israel, May 25 2014