cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239612 a(n) = Sum_{0 < x,y,z <= n and gcd(x^2 + y^2 + z^2, n)=1} gcd(x^2 + y^2 + z^2 - 1, n).

Original entry on oeis.org

1, 8, 30, 112, 220, 240, 546, 1280, 1134, 1760, 2310, 3360, 4212, 4368, 6600, 13312, 9520, 9072, 12654, 24640, 16380, 18480, 22770, 38400, 42500, 33696, 39366, 61152, 47908, 52800, 56730, 131072, 69300, 76160, 120120, 127008, 99900, 101232, 126360, 281600
Offset: 1

Views

Author

Keywords

Comments

Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

Crossrefs

Programs

  • Mathematica
    g3[n_] := Sum[If[GCD[x^2 + y^2 + z^2, n] == 1, GCD[x^2 + y^2 + z^2 - 1, n], 0],{x, 1, n},{y, 1, n},{z,1,n}]; Array[g3,100]
  • PARI
    a(n) = {s = 0; for (x=1, n, for (y=1, n, for (z=1, n, if (gcd(x^2+y^2+z^2,n) == 1, s += gcd(x^2+y^2+z^2-1,n));););); s;} \\ Michel Marcus, Jun 29 2014
    
  • PARI
    a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^3)); sum(i=0, n-1, if(gcd(i,n)==1, polcoeff(p,i)*gcd((i-1)%n,n)))} \\ Andrew Howroyd, Aug 07 2018

Extensions

Keyword:mult added by Andrew Howroyd, Aug 07 2018