A239622 Conjecturally, the irregular triangle of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).
0, 1, 2, 4, 3, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31, 36, 37, 54, 55, 57, 58, 110, 171, 784, 786, 5, 8, 15, 16, 17, 20, 35, 42, 45, 50, 51, 52, 53, 56, 59, 60, 77, 80, 133, 134, 135, 136, 156, 157, 158, 159, 160, 161, 170, 210, 211, 212, 400, 401, 402, 651, 652, 785
Offset: 0
Examples
The irregular triangle begins: 0, 1, 2, 4 3, 6, 7, 9,..., 784, 786 5, 8, 15, 16,..., 652, 785 13, 14, 18, 19,..., 445, 2080 25, 26, 27, 32,..., 783, 902 61, 62, 63, 64,..., 2033, 2034
Links
Programs
-
Mathematica
b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]] - 1, {p, Join[{0}, Prime[Range[20]]]}]
Comments