A239697 Smallest m such that m and reverse(m) each have n (not necessarily distinct) prime factors.
2, 4, 8, 88, 252, 2576, 8820, 2112, 4224, 8448, 44544, 48384, 846720, 4078080, 405504, 4091904, 441606144, 405909504, 886898688, 677707776, 4285005824, 63769149440, 21128282112, 633498894336, 2701312131072, 6739855589376, 29142024192, 65892155129856, 4815463645184, 445488555884544, 23088546155855872
Offset: 1
Examples
2576 = 2*2*2*2*23*7 (6 factors) 6752 = 2*2*2*2*2*211 (6 factors) Since 2576 is the smallest number with this property, a(6) = 2576.
Programs
-
Maple
A239697 := proc(n) local a; for a from 1 do if numtheory[bigomega](a) = n then if numtheory[bigomega](digrev(a)) =n then return a; end if; end if; end do: end proc: # R. J. Mathar, Apr 04 2014
-
Python
import sympy from sympy import factorint from sympy import primorial def Rev(x): rev = '' for i in str(x): rev = i + rev return int(rev) def RevFact(x): n = 2 while n <= primorial(x): if sum(list(factorint(n).values())) == x: if sum(list(factorint(Rev(n)).values())) == x: return n else: n += 1 else: n += 1 x = 1 while x < 50: print(RevFact(x)) x += 1
Formula
Extensions
a(17)-a(23) from Giovanni Resta, Mar 31 2014
a(24)-a(31) from David A. Corneth, Oct 03 2020
Comments