cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242482 Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 1.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 97, 99
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2014

Keywords

Comments

Numbers n such that A242480(n) = (1/2*n*(n+1)) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 1.
Conjecture: with number 1 complement of A242483.
Supersequence of primes (A000040).
If there is no odd multiply-perfect number, then:
(1) a(n) = union of odd numbers >= 3 and even numbers from A239719.
(2) a(n) = supersequence of odd numbers (A005408).

Examples

			6 is in sequence because [(6*(6+1)/2) mod 6 + sigma(6) mod 6 + antisigma(6) mod 6] / 6 = (21 mod 6 + 12 mod 6 + 9 mod 6) / 6 = (3 + 0 + 3 ) / 6 = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | n eq ((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))]

A239713 Primes of the form m = 3^i + 3^j - 1, where i > j >= 0.

Original entry on oeis.org

3, 11, 29, 83, 89, 107, 251, 269, 809, 971, 2213, 2267, 6563, 6569, 6803, 8747, 19709, 19763, 20411, 59051, 65609, 177173, 183707, 531521, 538001, 590489, 1594331, 1594403, 1595051, 1596509, 4782971, 4782977, 4783697, 14348909, 14349149, 14526053, 14880347
Offset: 1

Views

Author

Hieronymus Fischer, Mar 28 2014

Keywords

Comments

The base-3 representation of a term 3^i + 3^j - 1 has base-3 digital sum = 1 + 2*j == 1 (mod 2).
In base-3 representation the first terms are 10, 102, 1002, 10002, 10022, 10222, 100022, 100222, 1002222, 1022222, 10000222, 10002222, 100000002, 100000022, 100022222, 102222222, 1000000222, 1000002222, 1000222222, 10000000002, 10022222222, 100000000222, 100022222222, ...

Examples

			a(1) = 3, since 3 = 3^1 + 3^0 - 1 is prime.
a(5) = 89, since 89 = 3^4 + 3^2 - 1 is prime.
		

Crossrefs

Cf. A018900, A239709, A239712 (base 2), A239714 (base 4), A239715 (base 5), A239716 (base 6), A239717 (base 7), A239718 (base 8), A239719 (base 9), A239720 (base 10).

Programs

  • Maple
    select(isprime, [seq(seq(3^i+3^j-1, j=0..i-1), i=1..25)])[];  # Alois P. Heinz, Dec 22 2024
  • Mathematica
    Select[Flatten[Table[3^i + 3^j - 1, {i, 1, 25}, {j, 0, i - 1}]], PrimeQ] (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
  • Smalltalk
    A239713
    "Answers the n-th term of A239713.
      Usage: n A239713
      Answer: a(n)"
      | a b i j k p q terms |
      terms := OrderedCollection new.
      k := 0.
      b := 3.
      p := b.
      i := 1.
      [k < self] whileTrue:
             [j := 0.
             q := 1.
             [j < i and: [k < self]] whileTrue:
                       [a := p + q - 1.
                       a isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q.
                       j := j + 1].
             i := i + 1.
             p := b * p].
         ^terms at: self
    [by Hieronymus Fischer, Apr 14 2014]
    --------------------
    
  • Smalltalk
    A239713
    "Version 2: Answers the n-th term of A239713.
      Uses distinctPowersOf: b from A018900
      Usage: n A239713
      Answer: a(n)”
      | a k n terms |
      terms := OrderedCollection new.
      n := 1.
      k := 0.
      [k < self] whileTrue:
             [(a:= (n distinctPowersOf: 3) - 1)
                  isPrime ifTrue:    [k := k + 1.
                                     terms add: a].
                  n := n + 1].
      ^terms at: self
    [by Hieronymus Fischer, Apr 22 2014]
    -----------
    
  • Smalltalk
    A239713
      "Version 3: Answer an array of the first n terms of A239713.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239713
      Answer: #(3 11 29 ... ) [a(1) ... a(n)]”
      ^self primesWhichAreDistinctPowersOf: 3 withOffset: -1
    [by Hieronymus Fischer, Apr 22 2014]

A239718 Primes of the form m = 8^i + 8^j - 1, where i > j >= 0.

Original entry on oeis.org

71, 4159, 32831, 262151, 266239, 294911, 2101247, 18874367, 134479871, 1073741831, 68721573887, 549755813951, 4398046515199, 4398046543871, 4398046773247, 4398063288319, 281474976711167, 281474976743423, 281474978807807, 281474993487871, 282024732524543
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-8 representation of a term 8^i + 8^j - 1 has base-8 digital sum = 1 + 7*j == 1 (mod 7).
In base-8 representation the first terms are 107, 10077, 100077, 1000007, 1007777, 1077777, 10007777, 107777777, 1000777777, 10000000007, 1000007777777, 10000000000077, 100000000007777, ...
Numbers m that satisfy m = 8^i + 8^j - 1 with odd i and j are not terms. Example: 33279 = 8^5 + 8^3 - 1 = 3*11093.

Examples

			a(1) = 71, since 71 = 8^2 + 8^1 - 1 is prime.
a(2) = 4159, since 4159 = 8^4 + 8^2 - 1 is prime.
		

Crossrefs

Cf. A018900, A239709, A239712 (base 2), A239713 (base 3), A239714 (base 4), A239715 (base 5), A239716 (base 6), A239717 (base 7), A239719 (base 9), A239720 (base 10).

Programs

  • Maple
    select(isprime, [seq(seq(8^i+8^j-1, j=0..i-1), i=1..25)])[];  # Alois P. Heinz, Dec 22 2024
  • Smalltalk
    A239718
      "Answers an array of the first n terms of A239718.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
    Usage: n A239718
    Answer: #(71 4159 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 8 withOffset: -1
Showing 1-3 of 3 results.