cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239781 Number of pairs of functions f, g from a size n set into itself satisfying f(g(x)) = f(f(g(x))).

Original entry on oeis.org

1, 1, 12, 321, 15280, 1127745, 118507536, 16731979033, 3044595017472, 692050790547297, 191796657547052800, 63563842088104098081, 24793529117087476242432, 11232023076988690608825505, 5843573099019743656060348416, 3457799186387568447755745563625
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n, k)*add(binomial(n-k, i)*k^i*
            (n-k-1)^(n-k-i)*(k+i)^n, i=0..n-k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 17 2014
  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_] := Sum[Binomial[n, k]*Sum[Binomial[n-k, i]*k^i*(n-k-1)^(n-k-i)*(k+i)^n, {i, 0, n-k}], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} C(n,k) * Sum_{i=0..n-k} C(n-k,i) * k^i * (n-k-1)^(n-k-i) * (k+i)^n. - Alois P. Heinz, Jul 17 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
a(8)-a(15) from Alois P. Heinz, Jul 17 2014