A239929 Numbers n with the property that the symmetric representation of sigma(n) has two parts.
3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 92, 94, 97, 101, 102, 103, 106, 107, 109, 113, 114, 116, 118, 122, 124, 127, 131, 134, 136, 137, 138
Offset: 1
Keywords
Examples
From _Hartmut F. W. Hoft_, Sep 16 2015: (Start) a(23) = 52 = 2^2 * 13 = q * p with q = 4 in A174973 and 8 < 13 = p. a(59) = 136 = 2^3 * 17 = q * p with q = 8 in A174973 and 16 < 17 = p. The first six columns of the irregular triangle through prime 37: 1 2 4 6 8 12 ... ------------------------------- 3 5 10 7 14 11 22 44 13 26 52 78 17 34 68 102 136 19 38 76 114 152 23 46 92 138 184 29 58 116 174 232 348 31 62 124 186 248 372 37 74 148 222 296 444 ... (End)
Links
- Hartmut F. W. Hoft, Proof of Characterization Theorem
Crossrefs
Programs
-
Maple
isA174973 := proc(n) option remember; local k,dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; for k from 2 to nops(dvs) do if op(k,dvs) > 2*op(k-1,dvs) then return false; end if; end do: true ; end proc: A174973 := proc(n) if n = 1 then 1; else for a from procname(n-1)+1 do if isA174973(a) then return a; end if; end do: end if; end proc: isA239929 := proc(n) local i,p,j,a73; for i from 1 do p := ithprime(i+1) ; if p > n then return false; end if; for j from 1 do a73 := A174973(j) ; if a73 > n then break; end if; if p > 2*a73 and n = p*a73 then return true; end if; end do: end do: end proc: for n from 1 to 200 do if isA239929(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Oct 04 2018
-
Mathematica
(* sequence of numbers k for m <= k <= n having exactly two parts *) (* Function a237270[] is defined in A237270 *) a239929[m_, n_]:=Select[Range[m, n], Length[a237270[#]]==2&] a239929[1, 260] (* data *) (* Hartmut F. W. Hoft, Jul 07 2014 *) (* test for membership in A174973 *) a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}] a174973[n_]:=Select[Range[n], a174973Q] (* compute numbers satisfying the condition *) a239929Stalk[start_, bound_]:=Module[{p=NextPrime[2 start], list={}}, While[start p<=bound, AppendTo[list, start p]; p=NextPrime[p]]; list] a239929F[n_]:=Sort[Flatten[Map[a239929Stalk[#, n]&, a174973[n]]]] a239929F[138] (* data *)(* Hartmut F. W. Hoft, Sep 16 2015 *)
Formula
Entries b(i, j) in the irregular triangle with rows indexed by i>=1 and columns indexed by j>=1 (alternate indexing of the example):
b(i,j) = A000040(i+1) * A174973(j) where A000040(i+1) > 2 * A174973(j). - Hartmut F. W. Hoft, Dec 06 2016
Extensions
Extended beyond a(56) by Michel Marcus, Apr 07 2014
Comments