A239948 Number of partitions of n such that (number of distinct parts) < least part.
1, 0, 1, 1, 2, 1, 3, 2, 4, 4, 6, 6, 9, 9, 12, 14, 17, 18, 25, 26, 32, 38, 43, 49, 62, 65, 78, 92, 103, 114, 142, 151, 175, 203, 229, 252, 302, 323, 378, 422, 477, 524, 619, 661, 758, 847, 958, 1038, 1204, 1297, 1485, 1626, 1829, 1989, 2285, 2459, 2770, 3035
Offset: 0
Examples
a(10) counts these 6 partitions: [10], [7,3], [6,4], [5,5], [4,3,3], [2,2,2,2,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d+1, 0, add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Apr 02 2014
-
Mathematica
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*) Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*) Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*) Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*) Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*) b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i <= d+1, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)