cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240008 Number of Dyck paths of semilength 2n such that the area between the x-axis and the path is 4n.

Original entry on oeis.org

1, 1, 3, 14, 65, 301, 1419, 6786, 32749, 159108, 777224, 3813745, 18783934, 92811389, 459832745, 2283628771, 11364500644, 56659024320, 282939657220, 1414980598167, 7085590965083, 35523567248527, 178289298823240, 895697952270827, 4503912366189604
Offset: 0

Views

Author

Alois P. Heinz, Mar 30 2014

Keywords

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(y<0 or y>x or k<0 or k>x^2/2-(y-x)^2/4, 0,
          `if`(x=0, 1, b(x-1, y-1, k-y+1/2) +b(x-1, y+1, k-y-1/2)))
        end:
    a:= n-> b(4*n, 0, 4*n):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0 || k>x^2/2-(y-x)^2/4, 0, If[x==0, 1, b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]];
    a[n_] := b[4n, 0, 4n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 01 2017, translated from Maple *)

Formula

a(n) = A129182(2n,4n) = A239927(4n,2n).
a(n) ~ c * d^n / sqrt(n), where d = 5.134082940807122222912767966569622... and c = 0.198313337349936555418443931967... - Vaclav Kotesovec, Apr 01 2014