cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240027 Number of partitions of n such that the successive differences of consecutive parts are strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 7, 9, 9, 13, 14, 16, 20, 23, 25, 32, 34, 38, 45, 51, 55, 65, 70, 77, 89, 99, 106, 122, 131, 143, 161, 177, 189, 211, 229, 248, 272, 298, 317, 349, 378, 406, 440, 479, 511, 554, 597, 640, 686, 744, 792, 850, 913, 973, 1039, 1122, 1189, 1268, 1358, 1444, 1532, 1646, 1742, 1847, 1975, 2094, 2210, 2366
Offset: 0

Views

Author

Joerg Arndt, Mar 31 2014

Keywords

Comments

Partitions (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) < p(k) - p(k-1) for all k >= 3.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). Then a(n) is the number of integer partitions of n whose differences are strictly increasing. The Heinz numbers of these partitions are given by A325456. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly increasing, which is the author's interpretation. - Gus Wiseman, May 03 2019

Examples

			There are a(15) = 25 such partitions of 15:
01:  [ 1 1 2 4 7 ]
02:  [ 1 1 2 11 ]
03:  [ 1 1 3 10 ]
04:  [ 1 1 4 9 ]
05:  [ 1 1 13 ]
06:  [ 1 2 4 8 ]
07:  [ 1 2 12 ]
08:  [ 1 3 11 ]
09:  [ 1 4 10 ]
10:  [ 1 14 ]
11:  [ 2 2 3 8 ]
12:  [ 2 2 4 7 ]
13:  [ 2 2 11 ]
14:  [ 2 3 10 ]
15:  [ 2 4 9 ]
16:  [ 2 13 ]
17:  [ 3 3 9 ]
18:  [ 3 4 8 ]
19:  [ 3 12 ]
20:  [ 4 4 7 ]
21:  [ 4 11 ]
22:  [ 5 10 ]
23:  [ 6 9 ]
24:  [ 7 8 ]
25:  [ 15 ]
		

Crossrefs

Cf. A240026 (nondecreasing differences).
Cf. A179255 (distinct parts, nondecreasing), A179254 (distinct parts, strictly increasing).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[#]&]],{n,0,30}] (* Gus Wiseman, May 03 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A240027(n)
      (0..n).map{|i| f(i)}
    end
    p A240027(50) # Seiichi Manyama, Oct 13 2018