A240068 Number of prime Lipschitz quaternions having norm prime(n).
24, 32, 48, 64, 96, 112, 144, 160, 192, 240, 256, 304, 336, 352, 384, 432, 480, 496, 544, 576, 592, 640, 672, 720, 784, 816, 832, 864, 880, 912, 1024, 1056, 1104, 1120, 1200, 1216, 1264, 1312, 1344, 1392, 1440, 1456, 1536, 1552, 1584, 1600, 1696, 1792
Offset: 1
Keywords
Links
- Wikipedia, Hurwitz quaternion
Crossrefs
Programs
-
Mathematica
(* first << Quaternions` *) mx = 17; lst = Flatten[Table[{a, b, c, d}, {a, -mx, mx}, {b, -mx, mx}, {c, -mx, mx}, {d, -mx, mx}], 3]; q = Select[lst, Norm[Quaternion @@ #] < mx^2 && PrimeQ[Quaternion @@ #, Quaternions -> True] &]; q2 = Sort[q, Norm[#1] < Norm[#2] &]; Take[Transpose[Tally[(Norm /@ q2)^2]][[2]], mx]
Formula
a(n) = 8 * (prime(n) + 1) = 8 * A008864(n).
Comments