cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240084 Primes p such that p^4-p^3-p^2-p-1 is prime.

Original entry on oeis.org

3, 11, 17, 41, 59, 71, 101, 113, 179, 233, 293, 347, 389, 449, 461, 503, 521, 617, 641, 683, 797, 953, 1319, 1439, 1487, 1493, 1823, 1877, 1973, 2087, 2339, 2351, 2633, 2663, 2789, 2801, 2909, 2927, 2957, 2963, 2999, 3011, 3167, 3467, 3527, 3677, 3851, 3881, 3923
Offset: 1

Views

Author

Derek Orr, Mar 31 2014

Keywords

Examples

			3^4-3^3-3^2-3-1 = 41 is prime. Thus, 3 is a member of this sequence.
		

Crossrefs

Cf. A173179.

Programs

  • Mathematica
    Select[Prime[Range[600]],PrimeQ[#^4-#^3-#^2-#-1]&] (* Harvey P. Dale, Nov 23 2024 *)
  • PARI
    s=[]; forprime(p=2, 4000, if(isprime(p^4-p^3-p^2-p-1), s=concat(s, p))); s \\ Colin Barker, Apr 01 2014
  • Python
    import sympy
    from sympy import isprime
    {print(p) for p in range(10**4) if isprime(p**4-p**3-p**2-p-1) and isprime(p)}