A240111 Numbers for which the value of the Dedekind psi function (A001615) are less than the value of the infinitary Dedekind psi function (A049417).
8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 440, 456, 459, 472, 480, 486
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Peter J. C. Moses)
Crossrefs
Programs
-
Mathematica
f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct < Times @@ f1 @@@ fct]; Select[Range[500], q] (* Amiram Eldar, Feb 13 2025 *)
-
PARI
isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) < prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ Amiram Eldar, Feb 13 2025
Extensions
More terms from Peter J. C. Moses, Apr 02 2014
Comments