A240117 Schoenheim lower bound L(n,6,2).
1, 3, 3, 3, 4, 4, 6, 7, 7, 8, 8, 12, 12, 13, 14, 14, 19, 20, 20, 21, 22, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 50, 51, 52, 54, 55, 63, 65, 66, 68, 69, 79, 80, 82, 84, 85, 96, 98, 99, 101, 103, 114, 116, 118, 120, 122, 135, 137, 139, 141, 143, 157, 159, 161
Offset: 6
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 6..1000
- D. Gordon, G. Kuperberg and O. Patashnik, New constructions for covering designs, arXiv:math/9502238 [math.CO], 1995.
Crossrefs
Programs
-
Mathematica
schoenheim[n_, k_, t_] := Module[{lb = 1, n1 = n, k1 = k, t1 = t}, n1 += 1 - t1; k1 += 1 - t1; While[t1 > 0, lb = Ceiling[(lb*n1)/k1]; t1--; n1++; k1++]; lb]; Table[schoenheim[n, 6, 2], {n, 6, 100}] (* Jean-François Alcover, Jan 26 2019, from PARI *)
-
PARI
schoenheim(n, k, t) = { my(lb = 1); n += 1-t; k += 1-t; while(t>0, lb = ceil((lb*n)/k); t--; n++; k++ ); lb } s=[]; for(n=6, 100, s=concat(s, schoenheim(n, 6, 2))); s
Formula
Empirical g.f.: x^6*(x^35 -x^31 -x^30 +2*x^26 +x^23 +x^20 -x^18 +x^17 +x^16 +x^13 -x^12 +2*x^11 +x^7 -x^5 +x^4 +2*x +1) / ( -x^36 +x^35 +x^31 -x^30 +x^6 -x^5 -x +1).