cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240128 Number of partitions of n such that the sum of cubes of the parts is a cube.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 3, 4, 4, 4, 3, 3, 4, 4, 5, 12, 9, 14, 13, 13, 16, 17, 30, 34, 33, 34, 37, 50, 57, 64, 73, 99, 101, 114, 125, 141, 187, 193, 226, 264, 286, 326, 365, 456, 506, 565, 655, 742, 809, 911, 1071, 1233, 1392, 1506, 1744, 2046
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(17) counts these 4 partitions:  [17], [4,3,3,1,1,1,1,1,1,1], [4,3,2,2,2,2,1,1], [3,3,3,3,2,2,1].
		

Crossrefs

Cf. A240127.

Programs

  • Mathematica
    f[x_] := x^(1/3); z = 26; ColumnForm[t = Map[Select[IntegerPartitions[#], IntegerQ[f[Total[#^3]]] &] &, Range[z]] ](* shows the partitions *)
    t2 = Map[Length[Select[IntegerPartitions[#], IntegerQ[f[Total[#^2]]] &]] &, Range[40]] (* A240128 *) (* Peter J. C. Moses, Apr 01 2014 *)
  • PARI
    a(n)=my(s); forpart(v=n, s+=ispower(sum(i=1, #v, v[i]^3),3)); s \\ Charles R Greathouse IV, Mar 06 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 03 2024