A240177 Number of partitions of n such that (least part) >= (multiplicity of least part).
1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 18, 24, 30, 41, 51, 66, 83, 106, 131, 167, 204, 257, 315, 391, 475, 587, 710, 869, 1049, 1275, 1529, 1852, 2213, 2662, 3173, 3796, 4506, 5373, 6356, 7544, 8900, 10523, 12373, 14585, 17101, 20085, 23494, 27508, 32087, 37471
Offset: 0
Examples
a(6) counts these 5 partitions: 6, 51, 42, 33, 321.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}] (* A240175 *) t2 = Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}] (* A188216 *) t3 = Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}] (* A096403 *) t4 = Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *) t5 = Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)