A240265 Numbers that divide the concatenation of their aliquot divisors, in ascending order.
1, 4, 15, 16, 255, 375, 495, 795, 1469, 3825, 9375, 28125, 66375, 67875, 234375, 249487, 286875, 309375, 337185, 450615, 590625, 628125, 1369125, 2390625, 2773125, 2781387, 3069375, 3706785, 4965309, 5859375, 12890625, 13539375, 26803125, 39607575, 62578125
Offset: 1
Examples
Aliquot divisors of 1469 are 1, 13, 113. Their concatenation in ascending order is 113113 and 113113/1469 = 77.
Programs
-
Maple
with(numtheory); T:=proc(t) local x,y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end: P:=proc(q) local a,b,c,d,i,k,n; for n from 2 to q do a:=sort([op(divisors(n))]); b:=a[nops(a)-1]; for i from nops(a)-2 by -1 to 1 do b:=b+a[i]*10^T(b); od; if type(b/n,integer) then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[6258*10^4],Divisible[FromDigits[Flatten[IntegerDigits/@ Most[ Divisors[ #]]]],#]&] (* Harvey P. Dale, Aug 21 2019 *)
Extensions
a(14)-a(34) from Giovanni Resta, Apr 03 2014
First term (a(1) = 1) prepended by Harvey P. Dale, Aug 21 2019
Comments