cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240265 Numbers that divide the concatenation of their aliquot divisors, in ascending order.

Original entry on oeis.org

1, 4, 15, 16, 255, 375, 495, 795, 1469, 3825, 9375, 28125, 66375, 67875, 234375, 249487, 286875, 309375, 337185, 450615, 590625, 628125, 1369125, 2390625, 2773125, 2781387, 3069375, 3706785, 4965309, 5859375, 12890625, 13539375, 26803125, 39607575, 62578125
Offset: 1

Views

Author

Paolo P. Lava, Apr 03 2014

Keywords

Comments

The sequence is infinite, because it contains all the numbers of the form 3*5^(2k+1). - Giovanni Resta, Apr 03 2014

Examples

			Aliquot divisors of 1469 are 1, 13, 113. Their concatenation in ascending order is 113113 and 113113/1469 = 77.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    T:=proc(t) local x,y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
    P:=proc(q) local a,b,c,d,i,k,n;
    for n from 2 to q do a:=sort([op(divisors(n))]); b:=a[nops(a)-1];
    for i from nops(a)-2 by -1 to 1 do b:=b+a[i]*10^T(b); od;
    if type(b/n,integer) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Select[Range[6258*10^4],Divisible[FromDigits[Flatten[IntegerDigits/@ Most[ Divisors[ #]]]],#]&] (* Harvey P. Dale, Aug 21 2019 *)

Extensions

a(14)-a(34) from Giovanni Resta, Apr 03 2014
First term (a(1) = 1) prepended by Harvey P. Dale, Aug 21 2019