cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240306 Number of partitions p of n such that (maximal multiplicity of the parts of p) <= (number of distinct parts of p).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 76, 100, 131, 169, 212, 278, 352, 442, 555, 703, 871, 1088, 1342, 1664, 2046, 2517, 3064, 3758, 4574, 5548, 6718, 8119, 9797, 11784, 14150, 16935, 20263, 24179, 28798, 34237, 40677, 48122, 57008, 67291, 79400
Offset: 0

Views

Author

Clark Kimberling, Apr 05 2014

Keywords

Examples

			a(6) counts these 6 partitions:  6, 51, 42, 411, 321, 2211.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]]  (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *)
    t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}]  (* A240305 *)
    t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *)
    t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *)
    t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *)
    t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}]  (* A240309 *)

Formula

a(n) = A240305(n) + A239964(n) for n >= 0.
a(n) + A240308(n) = A000041(n) for n >= 0.