A240315 Triangular array read by rows: T(n,k) is the number of compositions of n into exactly k parts in which no part is unique (each part occurs at least twice).
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 6, 0, 1, 0, 0, 0, 0, 0, 10, 0, 1, 0, 0, 1, 0, 7, 10, 15, 0, 1, 0, 0, 0, 1, 0, 10, 20, 21, 0, 1, 0, 0, 1, 0, 12, 1, 30, 35, 28, 0, 1, 0, 0, 0, 0, 0, 20, 0, 56, 56, 36, 0, 1, 0, 0, 1, 1, 13, 10, 126, 21, 98, 84, 45, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 0; 0, 0, 1; 0, 0, 0, 1; 0, 0, 1, 0, 1; 0, 0, 0, 0, 0, 1; 0, 0, 1, 1, 6, 0, 1; 0, 0, 0, 0, 0, 10, 0, 1; 0, 0, 1, 0, 7, 10, 15, 0, 1; 0, 0, 0, 1, 0, 10, 20, 21, 0, 1; 0, 0, 1, 0, 12, 1, 30, 35, 28, 0, 1; 0, 0, 0, 0, 0, 20, 0, 56, 56, 36, 0, 1; 0, 0, 1, 1, 13, 10, 126, 21, 98, 84, 45, 0, 1; ... T(8,4) = 7 because we have: 3+3+1+1, 3+1+3+1, 3+1+1+3, 1+3+3+1, 1+3+1+3, 1+1+3+3, 2+2+2+2.
References
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 87.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0, expand(b(n, i-1, t)+add(x^j*b(n-i*j, i-1, t+j)/j!, j=2..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): seq(T(n), n=0..14); # Alois P. Heinz, Apr 03 2014
-
Mathematica
nn=10;Table[Take[Transpose[Range[0,nn]!CoefficientList[Series[ Product[Exp[x^i y]-x^i y,{i,1,nn}],{y,0,nn}],{y,x}]],nn+1][[j,Range[1,j]]],{j,1,nn}]//Grid
Formula
Product_{i>=1} exp(x^i*y) - x^i*y = Sum_{k>=0} A_k(x)*y^k/k!, where A_k(x) is the o.g.f. for the number of compositions of n into k parts in which no part is unique. In other words, A_k(x) is the o.g.f. for column k.
Comments