cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240370 Positive integers n such that every element in the ring of integers modulo n can be written as the sum of two squares modulo n.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122, 123, 125, 127, 129, 130, 131, 133, 134, 137, 138, 139, 141, 142, 143, 145, 146, 149, 150, 151, 154, 155, 157, 158, 159, 161, 163, 165, 166, 167, 169
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that, if p^2 divides n for any prime p, then p = 1 mod 4.
Equivalently, squarefree numbers times A004613.
Thus, numbers k such that A065338(A057521(k)) = 1. - Antti Karttunen, Jun 21 2014
Different from A193304: terms 169, 289, 338, 507, 578, 841, 845, 867, ... are here but not in A193304. - Michel Marcus, Jun 20 2014
The asymptotic density of this sequence is 3/(8*K^2) = (3/4) * A243379 = 0.64208..., where K is the Landau-Ramanujan constant (A064533). - Amiram Eldar, Dec 19 2020

Examples

			In Z_7, 0^2 + 0^2 = 0, 1^2 + 0^2 = 1, 1^2 + 1^2 = 2, 3^2 + 1^2 = 3, 2^2 + 0^2 = 4, 2^2 + 1^2 = 5, 3^2 + 2^2 = 6. Therefore 7 is in the sequence.
In Z_8, there is no way to express 3 as a sum of two squares. Therefore 8 is not in the sequence.
		

Crossrefs

The subsequence A240109 is a version not allowing 0.
Different from A193304.
Complement of A053443. Subsequence of A192450.

Programs

  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n];
    a57521[n_] := n/Denominator[n/rad[n]^2];
    a65338[n_] := a65338[n] = If[n==1, 1, Mod[p = FactorInteger[n][[1, 1]], 4]* a65338[n/p]];
    Select[Range[200], a65338[a57521[#]] == 1&] (* Jean-François Alcover, Sep 22 2018, after Antti Karttunen *)
    Select[Range[200], AllTrue[FactorInteger[#], Mod[First[#1], 4] == 1 || Last[#1] == 1 &] &] (* Amiram Eldar, Dec 19 2020 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]>1 && f[i,1]%4>1, return(0))); 1
    
  • PARI
    isok(n) = { if (n < 2, return (0)); if ((n % 4) == 0, return (0)); forprime(q = 2, n, if (((q % 4) == 3) && ((n % q) == 0) && ((n % q^2) == 0), return (0)); ); return (1); } \\ Michel Marcus, Jun 08 2014
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A240370 (MATCHING-POS 1 1 (lambda (k) (= 1 (A065338 (A057521 k))))))
    ;; Antti Karttunen, Jun 21 2014