A240370 Positive integers n such that every element in the ring of integers modulo n can be written as the sum of two squares modulo n.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122, 123, 125, 127, 129, 130, 131, 133, 134, 137, 138, 139, 141, 142, 143, 145, 146, 149, 150, 151, 154, 155, 157, 158, 159, 161, 163, 165, 166, 167, 169
Offset: 1
Keywords
Examples
In Z_7, 0^2 + 0^2 = 0, 1^2 + 0^2 = 1, 1^2 + 1^2 = 2, 3^2 + 1^2 = 3, 2^2 + 0^2 = 4, 2^2 + 1^2 = 5, 3^2 + 2^2 = 6. Therefore 7 is in the sequence. In Z_8, there is no way to express 3 as a sum of two squares. Therefore 8 is not in the sequence.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Joshua Harrington, Lenny Jones, and Alicia Lamarche, Representing Integers as the Sum of Two Squares in the Ring Z_n, arXiv:1404.0187 [math.NT], Apr 01 2014 and, J. Int. Seq. 17 (2014) # 14.7.4.
Crossrefs
Programs
-
Mathematica
rad[n_] := Times @@ First /@ FactorInteger[n]; a57521[n_] := n/Denominator[n/rad[n]^2]; a65338[n_] := a65338[n] = If[n==1, 1, Mod[p = FactorInteger[n][[1, 1]], 4]* a65338[n/p]]; Select[Range[200], a65338[a57521[#]] == 1&] (* Jean-François Alcover, Sep 22 2018, after Antti Karttunen *) Select[Range[200], AllTrue[FactorInteger[#], Mod[First[#1], 4] == 1 || Last[#1] == 1 &] &] (* Amiram Eldar, Dec 19 2020 *)
-
PARI
is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]>1 && f[i,1]%4>1, return(0))); 1
-
PARI
isok(n) = { if (n < 2, return (0)); if ((n % 4) == 0, return (0)); forprime(q = 2, n, if (((q % 4) == 3) && ((n % q) == 0) && ((n % q^2) == 0), return (0)); ); return (1); } \\ Michel Marcus, Jun 08 2014
-
Scheme
;; With Antti Karttunen's IntSeq-library. (define A240370 (MATCHING-POS 1 1 (lambda (k) (= 1 (A065338 (A057521 k)))))) ;; Antti Karttunen, Jun 21 2014
Comments