cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A340646 a(n) = (prime(n)^n) mod prime(n+1).

Original entry on oeis.org

2, 4, 6, 3, 7, 16, 5, 9, 7, 1, 6, 16, 21, 32, 36, 16, 17, 22, 63, 4, 10, 75, 63, 96, 1, 38, 2, 66, 109, 100, 82, 119, 57, 53, 119, 67, 141, 137, 116, 89, 103, 85, 187, 101, 74, 58, 146, 144, 216, 37, 238, 16, 4, 21, 254, 185, 216, 187, 43, 15, 123, 109, 69
Offset: 1

Views

Author

Simon Strandgaard, Jan 14 2021

Keywords

Examples

			a(1) = prime(1)^1 mod prime(1+1) = 2^1 mod 3 = 2 mod 3 = 2,
a(2) = prime(2)^2 mod prime(2+1) = 3^2 mod 5 = 9 mod 5 = 4,
a(3) = prime(3)^3 mod prime(3+1) = 5^3 mod 7 = 125 mod 7 = 6,
a(4) = prime(4)^4 mod prime(4+1) = 7^4 mod 11 = 2401 mod 11 = 3,
a(5) = prime(5)^5 mod prime(5+1) = 11^5 mod 13 = 161051 mod 13 = 7.
		

Crossrefs

Programs

  • PARI
    a(n)=my(p=prime(n)); lift(Mod(p, nextprime(p+1))^n); \\ Michel Marcus, Jan 14 2021
  • Ruby
    require 'prime'
    values = []
    primes = Prime.first(20)
    primes.each_index do |n|
        next if n < 1
        values << (primes[n-1] ** n) % primes[n]
    end
    p values
    
Showing 1-1 of 1 results.