A240563 Primes formed from concatenation of higher primes onto the previous entry until prime, starting from 2.
2, 23, 2311, 231131, 23113147, 23113147229, 23113147229251, 23113147229251577, 23113147229251577857, 23113147229251577857859, 23113147229251577857859911, 231131472292515778578599111123, 2311314722925157785785991111231223
Offset: 1
Examples
Begin from 2. Next we try 23 - it is prime, this sets next iteration (23 is the "constant" part), upon which we try higher primes. Next we try 235 - composite; next we try 237 - composite; next we try 2311 - prime, this sets next iteration (2311 now becomes the "constant" part), upon which we try higher primes. Next we try 231113 - composite; next we try 231117 - composite; ...; next we try 231131 - prime, this sets next iteration (231131 now becomes the "constant" part), upon which we try higher primes. Next we try 23113147 - prime, this sets next iteration (23113147 now becomes the "constant" part), upon which we try higher primes.
Links
- Bill McEachen, Table of n, a(n) for n = 1..100
Programs
-
Maple
X:= 2: p:= 3: a[1]:= 2: for i from 2 to 30 do while not isprime(X*10^(1+ilog10(p))+p) do p:= nextprime(p) od: X:= X*10^(1+ilog10(p))+p; a[i]:= X; p:= nextprime(p); od: seq(a[i],i=1..30); # Robert Israel, Sep 15 2015
-
Mathematica
s[1] = 2; s[n_] := s[n] = Block[{d = Flatten[IntegerDigits /@ Array[s, n-1]], p = NextPrime@s[n - 1]}, While[! PrimeQ@ FromDigits@ Join[d, IntegerDigits@p], p = NextPrime@p]; p]; a[n_] := FromDigits@ Flatten[ IntegerDigits /@ Array[s, n]]; Array[a, 10] (* Giovanni Resta, Apr 09 2014 *)
-
PARI
print1(N=2); p=3; for(n=2,10, while(!isprime(eval(Str(N,p))), p=nextprime(p+1)); N=eval(Str(N,p)); p=nextprime(p+1); print1(", "N)) \\ Charles R Greathouse IV, Apr 09 2014
Extensions
a(7)-a(13) from Giovanni Resta, Apr 09 2014
Comments