A240587 Primes p of the form n^2 + 123456789 where 123456789 is the first zeroless pandigital number.
123457189, 123459289, 123465253, 123466789, 123470713, 123481753, 123482389, 123486373, 123489913, 123501733, 123505189, 123510613, 123535189, 123545593, 123564373, 123571033, 123584953, 123587833, 123592213, 123610453, 123631513, 123641689, 123657493
Offset: 1
Examples
123457189 is a prime and appears in the sequence because 123457189 = 20^2 + 123456789. 123459289 is a prime and appears in the sequence because 123459289 = 50^2 + 123456789.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..1111
Programs
-
Maple
KD := proc() local a; a:=n^2+123456789; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
-
Mathematica
Select[Table[k^2+123456789,{k,1,3000}],PrimeQ]