A234812 Primes p of the form n + 987654321 where 987654321 is the largest zeroless pandigital number.
987654323, 987654337, 987654347, 987654359, 987654361, 987654377, 987654379, 987654383, 987654419, 987654439, 987654443, 987654461, 987654463, 987654467, 987654511, 987654539, 987654581, 987654583, 987654601, 987654607, 987654611, 987654673, 987654677, 987654791
Offset: 1
Examples
987654323 is a prime and appears in the sequence because 987654323 = 2 + 987654321. 987654337 is a prime and appears in the sequence because 987654337 = 16 + 987654321.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..9777
Programs
-
Maple
KD := proc() local a; a:=n+987654321; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
-
Mathematica
Select[Table[k + 987654321, {k,1,1000}], PrimeQ] c=0; a=n+987654321; Do[If[PrimeQ[a], c=c+1; Print[c," ",a]], {n,0,200000}] (* b-file *)
Comments