A240591 The smaller of a pair of successive powerful numbers (A001694) without any prime number between them.
8, 25, 32, 121, 288, 675, 1331, 1369, 1936, 2187, 2700, 3125, 5324, 6724, 9800, 10800, 12167, 15125, 32761, 39200, 48668, 70225, 79507, 88200, 97336, 107648, 143641, 156800, 212521, 228484, 235224, 280900, 312481, 332928, 456968, 465124, 574564, 674028, 744769, 829921, 830297, 857476, 877952, 940896
Offset: 1
Keywords
Examples
25 is in the sequence because A001694(6)=25, A001694(7)=27, without primes between them.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..373 (terms below 10^15; terms 1..103 from Amiram Eldar, terms 104..235 from Chai Wah Wu)
Programs
-
Mathematica
Select[Partition[Join[{1},Select[Range[10^6],Min@FactorInteger[#][[All, 2]]> 1&]],2,1],PrimePi[#[[1]]]==PrimePi[#[[2]]]&][[All,1]] (* Harvey P. Dale, Mar 28 2018 *)
-
PARI
ispowerful(n)={local(h);if(n==1,h=1,h=(vecmin(factor(n)[, 2])>1));return(h)} nextpowerful(n)={local(k);k=n+1;while(!ispowerful(k),k+=1);return(k)} {for(i=1,10^6,if(ispowerful(i),if(nextprime(i)>=nextpowerful(i),print1(i, ", "))))}
-
Python
from itertools import count, islice from math import isqrt from sympy import mobius, integer_nthroot, nextprime def A240591_gen(): # generator of terms def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l, j = x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) return c+l m = 1 for n in count(2): k = bisection(lambda x:f(x)+n,m,m) if nextprime(m) > k: yield m m = k A240591_list = list(islice(A240591_gen(),30)) # Chai Wah Wu, Sep 14 2024