cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240667 a(n) is the GCD of the solutions x of sigma(x) = n; sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 1, 9, 13, 8, 0, 0, 1, 0, 19, 0, 0, 0, 1, 0, 0, 0, 12, 0, 29, 1, 1, 0, 0, 0, 22, 0, 37, 18, 27, 0, 1, 0, 43, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 49, 0, 0, 1, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 1, 0, 73, 0, 0, 0, 45, 0, 1, 0, 0
Offset: 1

Views

Author

Michel Marcus, Apr 10 2014

Keywords

Comments

From n = 1 to 5, the least integers such that a(x) = n, depending on if singletons (see A007370 and A211656) are accepted or not, are 1, 3, 4, 7, 6 or 12, 126, 124, 210, 22152.
Is it possible to find an integer n such that a(n) = 6? Answer: n = A241625(6) = 6187272.

Examples

			There are no integers such that sigma(x) = 2, so a(2) = 0.
There is a single integer, x = 2, such that sigma(x) = 3, so a(3) = 2.
There are 2 integers, x = 6 and 11, such that sigma(x)=12, their gcd is 1, so a(12) = 1.
		

Crossrefs

Programs

  • Maple
    A240667 := n -> igcd(op(select(k->sigma(k)=n, [$1..n]))):
    seq(A240667(n), n=1..82); # Peter Luschny, Apr 13 2014
  • Mathematica
    a[n_] := GCD @@ Select[Range[n], DivisorSigma[1, #] == n&];
    Array[a, 100] (* Jean-François Alcover, Jul 30 2018 *)
  • PARI
    sigv(n) =  select(i->sigma(i) == n, vector(n, i, i));
    a(n) = {v = sigv(n); if (#v == 0, 0, gcd(v));}
    
  • PARI
    a(n) = my(s = invsigma(n)); if(#s, gcd(s), 0); \\ Amiram Eldar, Dec 19 2024, using Max Alekseyev's invphi.gp

Formula

a(A007369(n)) = 0.