A240675 Number of partitions p of n such that exactly one number is in both p and its conjugate.
1, 0, 0, 3, 4, 6, 8, 8, 9, 22, 22, 34, 50, 60, 74, 105, 120, 144, 186, 234, 280, 358, 440, 524, 665, 782, 954, 1150, 1354, 1630, 1944, 2258, 2666, 3170, 3728, 4365, 5128, 5976, 6978, 8144, 9488, 10952, 12700, 14716, 16932, 19558, 22434, 25764, 29505, 33782
Offset: 1
Examples
a(6) counts these 6 partitions: 51, 42, 411, 3111, 2211, 21111, of which the respective conjugates are 21111, 2211, 3111, 411, 42, 51.
Links
- Manfred Scheucher, Table of n, a(n) for n = 1..65
- Manfred Scheucher, Sage Script
Programs
-
Mathematica
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, ?(# >= i &)], {i, First[#]}] &[p]; b[n] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* A240674 *) Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
-
PARI
conjug(v) = {my(m = matrix(#v, vecmax(v))); for (i=1, #v, for (j=1, v[i], m[i, j] = 1;);); vector(vecmax(v), i, sum(j=1, #v, m[j, i]));} a(n) = {my(v = partitions(n)); my(nb = 0); for (k=1, #v, if (#setintersect(Set(v[k]), Set(conjug(v[k]))) == 1, nb++);); nb;} \\ Michel Marcus, Jun 02 2015
Extensions
More terms from Manfred Scheucher, Jun 01 2015
Comments