A240690 Number of partitions p of n such that p contains fewer 1s than its conjugate.
0, 1, 1, 2, 3, 4, 7, 8, 14, 16, 26, 30, 47, 54, 81, 95, 136, 161, 224, 266, 361, 431, 571, 684, 891, 1067, 1369, 1641, 2077, 2488, 3116, 3726, 4623, 5520, 6790, 8093, 9884, 11753, 14262, 16923, 20415, 24168, 29006, 34255, 40920, 48214, 57344, 67410, 79863
Offset: 1
Examples
a(6) counts these 4 partitions: 6, 51, 42, 411, of which the respective conjugates are 111111, 21111, 2211, 3111. G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 14*x^9 + 16*x^10 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *) Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *) Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *) Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *) a[ n_] := SeriesCoefficient[ (-1 + 1 / QPochhammer[ x]) x / (1 + x), {x, 0, n}]; (* Michael Somos, Mar 16 2015 *)
-
PARI
q='q+O('q^60); concat([0], Vec((-1 + 1/eta(q))*q/(1+q))) \\ G. C. Greubel, Aug 07 2018
Formula
a(n) + a(n+1) = A000041(n). - Omar E. Pol, Mar 07 2015
G.f.: (-1 + Product_{k>0} (1 - x^k)^(-1)) * x / (1 + x). - Michael Somos, Mar 16 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Jun 02 2018
Comments