cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240690 Number of partitions p of n such that p contains fewer 1s than its conjugate.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 7, 8, 14, 16, 26, 30, 47, 54, 81, 95, 136, 161, 224, 266, 361, 431, 571, 684, 891, 1067, 1369, 1641, 2077, 2488, 3116, 3726, 4623, 5520, 6790, 8093, 9884, 11753, 14262, 16923, 20415, 24168, 29006, 34255, 40920, 48214, 57344, 67410, 79863
Offset: 1

Views

Author

Clark Kimberling, Apr 11 2014

Keywords

Comments

a(n+1) = number of partitions p of n such that (# 1s in p) <= (#1s in conjugate(p)).

Examples

			a(6) counts these 4 partitions: 6, 51, 42, 411, of which the respective conjugates are 111111, 21111, 2211, 3111.
G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 8*x^8 + 14*x^9 + 16*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p];  (* conjugate of partition p *)
    Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}]  (* A240690 *)
    Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}]  (* A240690(n+1) *)
    Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)
    a[ n_] := SeriesCoefficient[ (-1 + 1 / QPochhammer[ x]) x / (1 + x), {x, 0, n}]; (* Michael Somos, Mar 16 2015 *)
  • PARI
    q='q+O('q^60); concat([0], Vec((-1 + 1/eta(q))*q/(1+q))) \\ G. C. Greubel, Aug 07 2018

Formula

2*a(n) + A240691(n) = A000041(n) for n >= 1.
a(n) + a(n+1) = A000041(n). - Omar E. Pol, Mar 07 2015
G.f.: (-1 + Product_{k>0} (1 - x^k)^(-1)) * x / (1 + x). - Michael Somos, Mar 16 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Jun 02 2018