A240695 a(n) is the smallest k such that a unique product of distinct terms of A050376 which is equal to k! contains at least the first n terms of A050376.
2, 3, 4, 5, 125, 125, 138, 220, 220, 1766, 5526, 10351, 12365, 65653, 65653, 202738, 490333, 808762, 1478432, 1971352, 1971352, 1971352, 14798206, 14798206, 14798206, 14798206, 161974053, 547880880, 1619543840, 1619543840, 1619543840, 2103844465, 6435961044
Offset: 1
Keywords
Examples
5! = 2*3*4*5. We have the first 4 terms of A050376, so a(4) = 5.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..37
Programs
-
Mathematica
bad[n_, pp_, mo_] := Catch[Do[If[ Mod[(n - Total@ IntegerDigits[n, pp[[i]]]) /(pp[[i]] - 1), mo[[i]] + 1] != mo[[i]], Throw@ True], {i, Length@ pp}]; False]; a[n_]:= Block[{fa, mo, pp, k},fa = FactorInteger[ Times @@ Select[Range[2, Prime[n]], (f = FactorInteger@# ; Length[f] == 1 && IntegerQ[Log[2, f[[1, 2]]]]) &, n]]; pp = First /@ fa; mo = Last /@ fa; k = fa[[-1, 1]]; While[ bad[k, pp, mo], k++]; k]; Array[a,15] (* Giovanni Resta, Apr 11 2014 *)
Extensions
a(5)-a(23) from Giovanni Resta, Apr 11 2014
a(24)-a(33) from Hiroaki Yamanouchi, Oct 01 2014
Comments