cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240711 Sum of the largest parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

1, 15, 62, 163, 333, 596, 973, 1475, 2130, 2959, 3969, 5192, 6649, 8343, 10310, 12571, 15125, 18012, 21253, 24843, 28826, 33223, 38025, 43280, 49009, 55199, 61902, 69139, 76893, 85220, 94141, 103635, 113762, 124543, 135953, 148056, 160873, 174375, 188630
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2014

Keywords

Examples

			For a(n) add the parts in the first columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               15             62             163       ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; c[1] = 1; c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[b[n] - c[n], {n, 50}]
  • PARI
    Vec(x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 11 2014

Formula

G.f.: x*(7*x^6+27*x^5+43*x^4+52*x^3+33*x^2+13*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 11 2014