A240738 Number of compositions of n having exactly three fixed points.
1, 1, 3, 7, 12, 30, 61, 126, 258, 537, 1083, 2205, 4465, 9023, 18192, 36612, 73633, 147893, 296818, 595313, 1193351, 2391121, 4789448, 9590503, 19199906, 38430421, 76910470, 153901337, 307932963, 616076971, 1232495756, 2465545205, 4931986957, 9865425657
Offset: 6
Keywords
Examples
a(8) = 3: 1214, 1232, 12311. a(9) = 7: 1134, 1224, 1233, 12141, 12312, 12321, 123111. a(10) = 12: 11341, 12115, 12142, 12241, 12313, 12322, 12331, 121411, 123112, 123121, 123211, 1231111.
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 6..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, series( add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 4)) end: a:= n-> coeff(b(n, 1), x, 3): seq(a(n), n=6..45);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 4}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 3}]; Table[a[n], {n, 6, 45}] (* Jean-François Alcover, Nov 07 2014, after Maple *)
Formula
a(n) ~ c * 2^n, where c = 0.01795631780689407343024911217251418606332716557572090051127381129853009022... . - Vaclav Kotesovec, Sep 07 2014