cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240749 Numbers n such that prime(n)^2 + prime(n+1)^2 is a semiprime.

Original entry on oeis.org

2, 3, 6, 14, 30, 35, 37, 39, 41, 46, 52, 57, 68, 81, 82, 97, 101, 104, 112, 123, 126, 145, 154, 175, 189, 195, 209, 215, 221, 222, 259, 264, 272, 276, 308, 312, 314, 343, 357, 367, 370, 373, 389, 398, 399, 403, 411, 416, 418, 425, 432, 436, 447, 456, 462, 471, 473, 477, 485, 487, 489, 499, 509, 520, 538, 547
Offset: 1

Views

Author

Zak Seidov, Apr 11 2014

Keywords

Comments

a(n) = position of A216432(n) in A069484.

Examples

			a(1) = 2: prime (2)^2 + prime (3)^2  = 3^2 + 5^2 = 34 = A069484(2) = A216432 (1).
a(2) = 3: prime (3)^2 + prime (4)^2  = 5^2 + 7^2 = 74 = A069484(3)  = A216432 (2).
a(3) = 6: prime (6)^2 + prime (7)^2  = 13^2 + 17^2 = 458 = A069484(6)  = A216432 (3).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    isok := n -> evalb(bigomega(ithprime(n)^2 + ithprime(n+1)^2) = 2);
    A240749_list := n -> select(isok, [$1..n]); A240749_list(555); # Peter Luschny, Apr 12 2014
  • Mathematica
    Position[Total/@Partition[Prime[Range[600]]^2,2,1],?(PrimeOmega[#] == 2&)]// Flatten (* _Harvey P. Dale, Apr 12 2017 *)
  • PARI
    isok(n) = bigomega(prime(n)^2  + prime(n+1)^2) == 2;
    lista(nn) = {for(n=1, nn, if (isok(n), print1(n, ", ")));} \\ Michel Marcus, Apr 12 2014
    
  • PARI
    s=[]; for(n=2, 600, if(isprime((prime(n)^2+prime(n+1)^2)/2), s=concat(s, n))); s \\ Colin Barker, Apr 12 2014