A240827 a(n) = n for 1<=n<=6; thereafter a(n) = a(n-a(n-3))+a(n-a(n-6)).
1, 2, 3, 4, 5, 6, 9, 9, 9, 7, 8, 9, 10, 11, 12, 15, 15, 15, 13, 14, 15, 18, 18, 18, 18, 18, 18, 14, 16, 18, 25, 26, 24, 23, 22, 24, 20, 24, 24, 29, 28, 30, 29, 29, 27, 30, 28, 30, 27, 33, 33, 36, 32, 33, 27, 36, 36, 43, 36, 36, 38, 36, 36, 33, 32, 36, 39, 50, 48, 45, 39, 42, 37, 40, 42, 49, 44, 48, 48, 53, 48, 47, 42, 48, 44, 53, 48, 57, 52, 60
Offset: 1
References
- D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..50000
- D. R. Hofstadter, Curious patterns and non-patterns in a family of meta-Fibonacci recursions, Lecture in Doron Zeilberger's Experimental Mathematics Seminar, Rutgers University, April 10 2014; Part 1, Part 2.
- Index entries for Hofstadter-type sequences
Crossrefs
Cf. A240821.
Programs
-
Magma
I:=[1,2,3,4,5,6]; [n le 6 select I[n] else Self(n-Self(n-3))+Self(n-Self(n-6)): n in [1..100]]; // Vincenzo Librandi, Apr 16 2014
-
Maple
#Q(r,s) with initial values 1,2,3,4,... r:=3; s:=6; a:=proc(n) option remember; global r,s; if n <= s then n else if (a(n-r) <= n) and (a(n-s) <= n) then a(n-a(n-r))+a(n-a(n-s)); else lprint("died with n =",n); return (-1); fi; fi; end; t2:=[seq(a(n),n=1..100)];
-
Mathematica
{a[1]=1,a[2]=2,a[3]=3,a[4]=4,a[5]=5,a[6]=6,a[n_]:=a[n]=a[n-a[n-3]]+ a[n-a[n-6]]};Table[a[x],{x,100}] (* Harvey P. Dale, Nov 18 2021 *)
Comments