cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240828 a(1)=a(2)=0, a(3)=2; thereafter a(n) = Sum( a(n-i-s-a(n-i-1)), i=0..k-1 ), where s=0, k=3.

Original entry on oeis.org

0, 0, 2, 2, 4, 2, 6, 4, 8, 4, 10, 6, 12, 6, 14, 8, 16, 8, 18, 10, 20, 10, 22, 12, 24, 12, 26, 14, 28, 14, 30, 16, 32, 16, 34, 18, 36, 18, 38, 20, 40, 20, 42, 22, 44, 22, 46, 24, 48, 24, 50, 26, 52, 26, 54, 28, 56, 28, 58, 30, 60, 30, 62, 32, 64, 32, 66, 34, 68, 34, 70, 36, 72, 36, 74, 38, 76, 38, 78, 40, 80, 40
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2014

Keywords

Comments

Is this A185048 with the leading two 1's replaced by 0's? - R. J. Mathar, Apr 17 2014.
This is true, see formulas below. - Bruno Berselli, Apr 18 2014

Crossrefs

Cf. A185048.

Programs

  • Magma
    [n le 3 select 2*Floor((n-1)/2) else Self(n-Self(n-1))+Self(n-1-Self(n-2))+Self(n-2-Self(n-3)): n in [1..100]]; // Bruno Berselli, Apr 18 2014
    
  • Magma
    [n-1-((-1)^n+1)*(n-(-1)^Floor(n/2)-1)/4: n in [1..80]]; // Vincenzo Librandi, Jul 12 2015
  • Maple
    #T_s,k(n) from Callaghan et al. Eq. (1.6).
    s:=0; k:=3;
    a:=proc(n) option remember; global s,k;
    if n <= 2 then 0
    elif n = 3 then 2
    else
        add(a(n-i-s-a(n-i-1)),i=0..k-1);
    fi; end;
    t1:=[seq(a(n),n=1..100)];
  • Mathematica
    LinearRecurrence[{0, 1, 0, 1, 0, -1},{0, 0, 2, 2, 4, 2}, 100] (* Vincenzo Librandi, Jul 12 2015 *)

Formula

From Bruno Berselli, Apr 18 2014: (Start)
G.f.: 2*x^3*(1 + x + x^2)/((1 - x)^2*(1 + x)^2*(1 + x^2)).
a(n) = n - 1 - ((-1)^n + 1)*(n - (-1)^floor(n/2) - 1)/4. Therefore:
a(2h+1) = 2h, a(2h) = 2*floor(h/2), or also: a(4h) = a(4h+2) = 2h, a(4h+1) = 4h, a(4h+3) = 4h+2.
a(n) = a(n-2) + a(n-4) - a(n-6) for n>6. (End)